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Abstract

This thesis describes the security properties of GNUnet, a framework for

anonymous distributed and secure networking. The first part of this work

focuses on the theoretical background and the actual implementation of the

security features used by GNUnet. Particularly authentication, deniability

and anonymity are analyzed in greater detail, since new and uncommon

approaches are used to provide these features. The emphasis of the second

part lies on presumed vulnerabilities of these security concepts and possible

attacks against them.
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1 Introduction

During the last two decades data exchange over the internet has evolved

from a technique only required and used by experts to a common way of

communications for everyone. While online data exchange became evermore

common and important for economy, society etc. also the interest of partic-

ular persons and organizations, like governments, media and businesses was

evoked for achieving editorial control over parts or all of the information that

is exchanged online. Likewise the requirement for anonymous usage of the

net has increased significantly, especially over the last decade, as exchange

of data which has been conducted through classical ways before, was more

and more replaced by online alternatives. Some quite obvious examples in-

volve the publication of and access to uncensored information in totalitarian

regimes, traffic shaping executed by internet service providers when using file

sharing applications amongst others.

Quite a lot of applications exist nowadays to serve the purpose of anonymous

trusted data exchange, like Thor, Freenet, Darknet etc. just to mention the

most prominent. The GNUnet application, which is subject of this thesis,

especially its file-sharing service, comprises a sophisticated approach to solve

the problem of anonymity in a widely distributed peer-to-peer network.

Since GNUnet is still under heavy development this thesis focuses on release
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0.9.3. Please note that the protocols used by GNUnet have changed several

times between releases, hence it can not be ensured that results of this thesis

are applicable to earlier or future versions of GNUnet.
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2 Security mechanisms

This chapter describes the techniques that are used by GNUnet to implement

its security features. First it is laid out how a peer can discover other peers,

how it establishes authenticated connections with those peers and how the

messages exchanged over these connections are kept confident. Furthermore

it is elaborated how GNUnet provides anonymity for its peers and how it han-

dles resource allocation. Finally the methods used for achieving deniability

are discussed.

2.1 Peer discovery and transport

Like most other peer-to-peer system GNUnet is an overlay network that is

built on top of the existing internet. Therefore nodes in the overlay can be

considered to be connected by logical or symbolic links. To establish such

links involved nodes need to know the identity of its counterpart at applica-

tion level and the transport protocols it uses for communication. GNUnet

uses a special type of message to advertise transport information to other

peers and an abstraction layer to encapsulate logic for different transport

protocols and hiding it from the application, both concepts are specified in

[13] and are described below.
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2.1.1 Peer discovery

To propagate the peer id, the transport protocols and the transport addresses

GNUnet uses a special kind of message, referred to as HELLOs or peer ad-

vertisements. These messages contain the identity of the peer and one or

more network addresses for different transport protocols.

Listing 2.1: HELLO message

struct GNUNET_HELLO_Message

{

struct GNUNET_MessageHeader header;

uint32_t reserved GNUNET_PACKED;

struct GNUNET_CRYPTO_RsaPublicKeyBinaryEncoded

publicKey;

}

This struct is always followed by the actual network addresses which have

the format:

1. transport-name

2. address-length

3. address expiration

4. address

When a peer A receives a HELLO message from another peer B it sends a

PING message (and also its own HELLO if it hasn’t done it yet) back to B.

If B answers this PING message with a valid PONG message the advertised

combination of peer id, transport protocols and addresses is verified. B also
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sends a PING message to A, which in turn also responds with a PONG

message (see section 2.2 for details about PING and PONG messages).

2.1.2 Transport

GNUnet supports various transport protocols, like TCP, UDP, HTTP, SMTP

and others. To handle this different protocols GNUnet uses a transport ab-

straction layer (illustrated in Fig. 2.1). This layer processes incoming and

outgoing messages and transforms the transport events to GNUnet function

calls. The actual file sharing application then communicates with the trans-

port layer via TCP in a client-server like manor and only ever has to handle

peer identities and therefore doesn’t have to have any knowledge about the

transport.
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Figure 2.1: GNUnet layers

Peer-to-peer communication is inherently unreliable, because node failures

are a common occurrence. Even if those node failures are discarded, a peer

might use unreliable transport protocols, like UDP for example. Therefore

the transport abstraction layer does not hide network or node failures from

the application, to ensure that developers have to consider communications

faults in their code.
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2.1.3 Friend-To-Friend Mode

GNUnet also provides a so called friend-to-friend mode. Contrary to the

standard mode, where a peer will connect to any peer, a peer in friend-to-

friend mode connects only to peers whose id is contained in a local friend-list

file (file containing peer ids in plain text). This white-listing excludes all

other peers and increases security for this GNUnet peer, provided the peers

in the friends-list are trustworthy. Additionally GNUnet provides a mixed

mode, which lets a peer connect to arbitrary peers if it has at least a specified

number of connections to friends.

2.2 Authentication and Confidentiality

GNUnet uses a duplex three way handshake to establish a session between

two peers A and B. During the handshake both peers transmit a message,

containing an RSA-encrypted AES session key to their counterpart. The

session keys are tested by sending an encrypted message to the other peer

which in turn responds with an encrypted message itself. If the reply can be

decrypted correctly the reception of the session key is verified and the session

is established. After successful authentication the two session keys are used

to encrypt all further messages exchanged between the two peers.

RSA is an asymmetric encryption method, which means that separate keys

are used for encryption and decryption. These two keys are generated in

several steps. First the so called modulus n is calculated by multiplying two

large prime numbers. Then Euler’s totient function is used to calculate Φ(n).

Eventually the public key exponent e is chosen so that it is coprime to Φ(n).
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Finally the private key exponent d is calculated as the multiplicative inverse

of emodΦ(n). The owner of the key exponent pair A can now transmit his

public key (n, e)A to the intended counterpart B. If B now wants to send

a message m to A he can use (n, e)A to encrypt the message data, which in

turn can be decrypted by A using his private key (n, d)A[29].

AES uses the same key for encryption and decryption and therefore rep-

resents a symmetric cryptographic technique. Each block of data to encrypt

is represented as 4x4 column-major order matrix, which is termed the state.

Each row of the matrix contains n bytes, where n is the block length divided

by 32. The cipher key is generated by using a cryptographically strong ran-

dom number, which then serves as base to derive a set of keys, called Round

keys, with Rijndael’s key schedule. The first of the derived keys is then com-

bined with each byte of the plain text data using bit-wise xor, this operation

is called Round Key addition. Subsequently the state matrix is transformed

by applying a round function 10, 12, or 14 times (depending on the length

of the cipher key), with the final round differing slightly from the previous

rounds. First each byte of the state is modified independently, by performing

a non-linear byte substitution using a substitution table (S-box), this oper-

ation is called the SubBytes transformation. Secondly the first three rows of

the state are shifted cyclically over different numbers of bytes (offsets), this

is called the ShiftRows transformation. In the next step the data in each

column of the state is mixed. Each column is treated as a polynomial over

Rijndael’s finite field GF (28) and is then multiplied modulo x4 + 1 with a

fixed polynomial c(x) = 3x3 + x2 + x + 2. This is termed the MixColumns

transformation. Finally the next Round key addition is performed. In the

last iteration the execution of MixColumns is omitted. These operations re-
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sult in encrypted data which can be decrypted executing the previous steps

in reverse order with slight modifications [14].

2.2.1 Peer identity

When a peer is started for the first time, a 2048bit public-private RSA pair

is generated, using EME-PKCS1-v1 5 encoding [18]. An SHA-512 Hash of

the public key is compiled to serve as the identity of the peer.

Implementation details GNUnet uses gcrypt [34] as underlying encryp-

tion library. The format for input and output of key and encryption data used

by gcrypt are so called S-expressions [28]. GNUnet stores an S-expression

containing all RSA key data in a data structure [3]. From there the key in-

formation is extracted and transformed into a binary format defined by two

data structures.

Private key [4] The private key consists of the RSA modulus n with a

size of 256 bytes, the decryption key d. Additionally the encryption key e

and the prime numbers p, q from which the modulus was calculated are also

contained within this data structure.

Public key [5] The public key consist of the RSA modulus n again with a

size of 256 bytes and the encryption key e with a size of 2 bytes. The public

key part e is always 257, to accelerate the encryption operations.
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2.2.2 Key exchange

The peer identity along with bindings for the transport layer is then broadcast

to connected peers, this is called peer advertisement and the sent messages

are called HELLO messages (see 2.1.1). When a peer receives a HELLO

message it sets up two messages. The first message, called SetKeyMessage,

contains an AES session key and an RSA signature of the afore-mentioned

session key. The second message, called PingMessage contains the encrypted

peer identity of the neighbor and a shared secret for later challenge-response

authentication. The neighbor, validates the data contained in the PingMes-

sage and replies with a corresponding PongMessage. The PongMessage is

again verified and validated by the original peer, by decrypting the shared

secret received with the PongMessage. This sequence of operations is de-

picted in Fig. 2.2.
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Figure 2.2: Key exchange

AES Session Key

Since asymmetric encryption is costly to calculate, GNUnet uses symmetric

AES encryption to encrypt data exchanged with other peers. The 256-bit

AES session key required for encryption and decryption respectively is gen-

erated using a cryptographically strong random function.
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SetKeyMessage

The SetKeyMessage is used for transmitting the session key to the other

peer. Construction of the message requires two steps, first the session key is

encrypted with the public RSA key of the counterpart. Then the encrypted

key, along with some additional fields is signed with the private RSA key of

the peer. Finally the message is transmitted to the other peer.

Implementation details The field header, holds the message header which

contains the size and type (GNUNET MESSAGE TYPE CORE PING) of

the message. The field sender status of type KxStateMachine gives infor-

mation about the status of the key exchange. The field purpose is of type

GNUNET CRYPTO RsaSignaturePurpose. This struct consists of two fields,

the first size gives information about how many bits have to be signed. The

second one purpose contains the actual purpose of the signature (GNUNET -

SIGNATURE PURPOSE SET KEY in this case). The field creation time

holds the time when the encrypted key was created, which itself is stored in

encrypted key. The identity of the recipient is held in the field target. The

field signature holds the RSA signature of the fields purpose, creation time,

encrypted key and target.

Listing 2.2: SetKeyMessage

struct SetKeyMessage

{

struct GNUNET_MessageHeader header;

int32_t sender_status GNUNET_PACKED;
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struct GNUNET_CRYPTO_RsaSignaturePurpose purpose;

struct GNUNET_TIME_AbsoluteNBO creation_time;

struct GNUNET_CRYPTO_RsaEncryptedData encrypted_key;

struct GNUNET_PeerIdentity target;

struct GNUNET_CRYPTO_RsaSignature signature;

};

PingMessage

After the SetKeyMessage has been set up, another kind of message is ini-

tialized, the PingMessage [6]. The initialization consists of three steps. First

a random seed is generated. Then this seed, along with the AES session

key for encryption (skdec) and the identity of the neighbor is used to derive

an initialization vector (using HKDF [21]). In the final step the identity of

the neighbor is AES encrypted using the initialization vector created in the

previous step and skdec. Then the encrypted identity of the neighbor serves

as target of the PingMessage. Also the PingMessage is supplemented with a

random value, to serve as shared secret for later challenge-response authenti-

cation. Finally the PingMessage, containing the random seed, the encrypted

identity and the shared secret is transmitted to the neighbor.

16



Implementation details The field header holds the message header, which

contains the size and type (GNUNET MESSAGE TYPE CORE PING) of

the message. The field iv seed contains the salt used for derivation of the ini-

tialization vector. The field target contains the identity of the recipient and

the field challenge contains the random value to serve as shared secret.

Listing 2.3: PING message

struct PingMessage

{

struct GNUNET_MessageHeader header;

uint32_t iv_seed GNUNET_PACKED;

struct GNUNET_PeerIdentity target;

uint32_t challenge GNUNET_PACKED;

};

Receiving a SetKeyMessage

First the signature sent with the SetKeyMessage is verified using the pub-

lic key of the neighbor. Then the encrypted session key sent with the

SetKeyMessage is decrypted with the private key of the peer to serve as

the AES session key for decryption (skdec).
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Receiving a PingMessage

When a peer receives a PingMessage it derives an an initialization vector

using skdec, the seed sent with the PingMessage and the identity of the peer.

Then the target field of the Ping Message is decrypted and if the result

matches the identity of the peer, reception the PingMessage is deemed suc-

cessful.

PongMessage

After successful reception of a PingMessage the so called PongMessage is

set up. Again a random seed is generated for the PongMessage. Then this

seed and the shared secret received with the PingMessage, along with the

AES session key for encryption and the identity of the neighbor is used to

derive an initialization vector (using HKDF [21]). In the final step the shared

secret received with the PingMessage is AES (AES256, Modus: CFB-128)

encrypted, using the initialization vector created in the previous step and the

session key. Finally the PongMessage is transmitted to the neighbor.

Implementation details The field header, holds the message header, which

contains the size and type (GNUNET MESSAGE TYPE CORE PONG) of

the message. The field iv seed contains the salt used for derivation of the

initialization vector. The field challenge contains the encrypted shared secret

and the field target contains the identity of the recipient.

Listing 2.4: PONG message

struct PongMessage

{
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struct GNUNET_MessageHeader header;

uint32_t iv_seed GNUNET_PACKED;

uint32_t challenge GNUNET_PACKED;

struct GNUNET_BANDWIDTH_Value32NBO reserved;

struct GNUNET_PeerIdentity target;

};

Receiving a PongMessage

When a peer receives a PongMessage it again derives an initialization vector

using skdec, the seed received with the PongMessage, the shared secret sent

with the PingMessage and the identity of the peer (= SHA512 hashcode of

public key). The encrypted shared secret received with the PongMessage is

then decrypted. If the result of the decryption operation matches the shared

secret sent with the PingMessage (and the decrypted target matches the peer

identity) the key exchange is deemed successful and both peers now have two

AES session keys, where skencA = skdectB and skdecA = skencB .

2.2.3 Link encryption

Only the two peers involved in transmission of a message, sender and recip-

ient, should be aware of the actions being taken. To safeguard the confiden-

tiality between a peer and his neighbor the session keys retrieved at session
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initialization are used for link-encryption of all messages exchanged between

the two peers.

”Step-wise (link-by-link) protection of data that flows between

two points in a network, provided by encrypting data separately

on each network link, i.e., by encrypting data when it leaves a

host or sub-network relay and decrypting when it arrives at the

next host or relay. Each link may use a different key or even a

different algorithm.” [31]

A

New plaintext message

*

AESenc(keyAB)
AES encrypted
message
(using key AB)

B

Decrypted message

AES encrypted
message
(using key BC)

C

Decrypted message

...

AESdec(keyAB)

AESenc(keyBC)

AESdec(keyBC)

AESenc(keyCx)

Figure 2.3: Link encryption in GNUnet

2.3 Anonymity

The meaning of anonymity in GNUnet is, that one peer cannot be distin-

guished from other peers or more exact that the original sender of a message

cannot be determined easily or at all. To achieve this goal, a peer in GNUnet

uses several mechanisms also common to classical Chaum mixes [9]. These

mechanisms encompass the reordering, re-encoding and batching of messages

and also the prevention of repeated processing of identical messages.
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Addressee2
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Figure 2.4: Chaum mix

The re-encoding of messages in GNUnet is achieved differently as proposed

for classical mixes. Symmetric AES encryption is used for the re-encoding of

messages, instead of public key cryptography, to reduce required processing

time. Still message contents are signed with the private RSA key of the

sending peer. GNUnet also uses some additional methods for anonymization.

The original sender information is replaced with the sender information of

the forwarding node, if certain conditions are met. Furthermore messages

are sent to the next peer with a randomized delay. Content is migrated

through the network, thus background noise is generated. All these methods

are covered by GNUnet’s Anonymity Protocol (GAP) that will be discussed

in the following.

2.3.1 GNUnet’s Anonymity Protocol - GAP

GAP as presented in [7] was especially designed to match the anonymity re-

quirements of an anonymous peer-to-peer network, especially GNUnet. GAP

describes how anonymity is achieved and how peers handle incoming mes-

sages. The exchanged messages are for the most part queries for content and

replies to those queries, but are supplemented by random noise generated by

content migration. A query consists of a resource identifier, the hash code of

the content and a node identifier, the hash of the public key of the initiator.
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The reply is equivalent to the encrypted content requested in the query. Ad-

ditionally the GAP protocol uses a pseudo-random value, called time-to-live

to prevent loops when routing messages.

Routing

When a peer P receives a query it has to decide to how many and to which

of its connected peers P1, P2, . . . , Pm it sends the query to. This decision

depends on the available network bandwidth, current CPU load, local credit

rating of the sender along with the priority of the query (see 2.4) and a

random factor. It is also evaluated, for each connected node, whether its

peer id is ’close’ to the query hash. To determine the closeness of said hash

values a variant of the Pastry algorithm [30] is used. Peers that qualify are

preferably chosen as recipients. Nodes that have responded to queries before

are more likely to be chosen as one of the addressees as well, this is also

referred to as hot path routing.

It is also necessary to prevent queries from looping in the network. Therefore

each query is sent with a relative time value, called time-to-live (TTL). It

defines how long peers should route replies for this query. When a peer

receives a query the TTL is added to the local absolute time and the result

is called the local time-to-live (TTLloc). Afterwards the TTL is decreased by

a random value. The peer id of the sender, the query hash and the TTLloc

are then added to a local routing table. If an entry with the same sender id

and query hash already exists, the query is only forwarded if the the original

entry is sufficiently old. In this case the TTLloc of the entry is updated in

the routing table. TTLloc is also used for ordering received queries, where

queries with a higher TTLloc are routed first.
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Queries are buffered before they are sent to the selected recipients until the

buffer is full or a randomized timer elapses. It has to be noted, that it is

possible that no peers are chosen as recipients or that the buffer is discarded,

if a peer is considered busy and therefore GAP does not provide reliable

delivery of messages.

Replies are padded to uniform size to prevent leaking information about the

content of the message. Queries are used for padding, to enhance perfor-

mance, if possible. Otherwise random noise is generated to pad the mes-

sage.

Indirection and Forwarding

When node B receives a query qA from node A it substitutes the node iden-

tifier of the query with its own and sends the modified query qB to node C,

as is illustrated in Fig. 2.5.
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Figure 2.5: Source Rewriting

If Node C holds the requested content it sends reply rC(qB) containing the

requested content back to node B, which in turn sends reply rB(qA) containing

the content to node A. This procedure is termed Source Identity Rewriting

or indirection and its purpose is to obfuscate the initiator of the query. In

the aforementioned scenario C would have no means to determine that A was

the originator of the query, since the query only contains the node identifier

of B, as is illustrated in Fig. 2.6. On the other hand B knows that the query

was originally sent by A, because each node stores queries it has redirected

itself in a routing table as mentioned in before (see 2.3.1).
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Figure 2.6: Indirection

For further obfuscation of activity, GAP also allows nodes to send queries

multiple times, which enables a node to hide queries originating from itself

between resent queries, making it harder for an adversary to distinguish

between queries originating from a node and queries which are merely resent

by the node. To make it even harder for an adversary to determine if queries

originate from a node, queries are queued and then sent with a random

delay.

Indirection is not mandatory in GAP, which means a node B can choose to

leave the node identifier of the query qA unchanged and just forward it to

node C, this is also depicted in Fig. 2.7. In this case the efficiency of the

data transfer increases, since the requested content can be sent directly to

node A, which might be the requesting node or is at least one hop nearer

to the requesting node than B. However since source identity rewriting is
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omitted by node B, it possibly damages its own anonymity, because queries

forwarded by the node are now distinguishable from queries originating from

it.

A

C

B

qA

qA

rC(qA)

(1)

(2)

(3)

Figure 2.7: Forwarding

Content migration

When a node receives content from another node it has not requested itself,

the data is considered valuable and enough local disk space is available it

stores the content locally for future requests. This constantly changes the

location of the content on the network making it harder for an adversary to

pinpoint its exact location. Also if the network is idle nodes will send random

content out to adjacent nodes to generate noise, which complicates analysis

of activity and also enhances content migration.
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Degree of anonymity

To make anonymity measurable it is essential to have a rule for computing the

degree of anonymity of a peer P degP . degP is the inverse of the probability

that a message has been initiated by P. degP is not a static property and

changes depending on the rate of initiated and indirected messages within a

specific time interval.

Assuming that peer P indirects the amount of x messages in the given time

interval and initiates the amount of y messages itself in the same interval the

resulting probability pmessageP that an arbitrary messages was initiated by P

is pmessageP = y
x+y

and therefore degP = 1
pmessageP

. This implies that pmessageP

increases along with the amount y of indirected messages. On the other hand

pmessageP decreases along with the amount x of initiated messages. This is also

comprehensible intuitively, because x = 0⇒ p = 1 and y = 0⇒ p = 0.

Above example discounts both the fact that the maximal bandwidth bmax

which is available to P is limited and there’s always certain level of back-

ground noise in a completely idle GNUnet-network, with the minimal extent

of n kpbs. The background noise is caused by content migration, key ex-

change and forwarding of peer advertisements (HELLOs). If this precondi-

tions are taken into consideration the calculation of degP has to be modified

slightly.

To simplify the following example it is assumed, that P sends queries with

a constant data rate r into the network and doesn’t receive any queries in

the starting interval i1 itself. Hence the probability ppacketP that a packet

originated from P is ppacketP = r
n
. If P receives and indirects packets of size

t kbps from another peer in the next interval i2 the probability decreases
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to ppacketP = r
n+t

and the degree of anonymity increases to dega = 1
ppacketP

accordingly. In some following interval ik the size of t increases to the extent

that the maximum bandwidth capacity of P bmax is reached (bmax = r+n+t).

In this state degP arrives at the maximum degree of anonymity degPmax that

P can achieve with bmax and given data rate r.

The assumption that a peer sends queries with a constant data rate r into

the network is not met in a realistic scenario, since a GNUnet peer can start

the query for a top level IBlock (see 2.5.1) only after it has received the

corresponding KBlock or SBlock (also see 2.5.1 and 2.5.1). Similarly a peer

can only start the query for an IBlock that is contained deeper within the

tree if the parent IBlock has been received previously. The same is also

valid for DBlocks (see 2.5.1). Thus the sending and receiving of queries and

replies, and therefore r, cannot be constant. The variance of the data rate r is

additionally increased, because of buffering and batched sending of messages.

It is also possible, that a peer, depending on the bandwidth and CPU load,

starts to forward or even drop incoming queries. This decreases the amount

of t, which in turn decreases dega, assuming the data rate r is constant.

2.4 Economic model

The economic model used by GNUNet as described in [16] differs from other

economic models proposed for peer-to-peer systems as laid out in [8], for ex-

ample, in that it introduces a resource allocation scheme that is not based

on classical money-based approaches. Economic models for resource alloca-

tions that use money as their currency suffer from a number of shortcomings

rendering them ineligible for usage in GNUnet.
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First of all money-based models require a central authority that issues the

currency used for resource trading. Since GNUnet is a completely decen-

tralized peer-to-peer network, no such entity exists and thus the creation of

currency would have to be done by the peers themselves. Indeed there are ex-

amples of decentralized currency systems like bitcoins [26], but this approach

in turn introduces new problems in the area of anonymity [27]. Secondly the

exchange of digital currency, similar to the exchange of physical money, in-

volves the risk of maliciously behaving participants. Let’s suppose that peer

A advertises its resources for a specific price x. Peer B now wants to use

A’s resources and agrees to the price. If the money is transferred before B

gains access to the resources a could just simply deny B the promised usage

or only provide a fraction of the resources. On the other hand, if payment is

conducted after usage of A’s resources B could just refuse to settle its debt,

in part or completely. Because there is no central authority in GNUnet it is

hard to impossible to punish such malicious behavior.

Because of above-mentioned limitations of money-based systems GNUnet’s

economy is based upon trust. In this context trust reflects the amount of

confidence, deducted from previous interactions with another node, that its

resource requests will be satisfied by the opposite node. Contrary to money

trust is a localized property in the sense that a node determines itself how

trustworthy it deems each connected node to be and in turn cannot control

how much it is trusted by these nodes. This also implies that a node has to

communicate with another node, before it can assign trust to it or gain its

trust. Moreover trust levels can deviate between two nodes, e.g. because the

first node has already fulfilled one or more resource requests of the second

peer, whereas the second peer has not yet received any requests from the first

one. As a result the first node would have a higher trust value at the second
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node than the second node has gained with itself.

2.4.1 Trust in GNUnet

When a peer connects to GNUnet for the first time its initial value of trust

is zero at all its neighbors. This strategy prevents nodes from trying to

gain trust by replacing their peer identity. After having joined the network

a GNUnet peer A assesses the contribution of each connected peer P1...Pn

with a positive integer value. These values represent the trust within each

neighbor. Trust can be gained by participating in the network, more precisely

by replying to requests for content or queries in the terms of GNUnet. If a

peer delivers content to another peer or, again in GNUnet terminology, sends

a reply, its trust value at the recipient increases. The amount of increase

depends on the priority the query was sent in the first place. The priority is

also expressed as a non-negative integer value. Just as the trust value of a

peer responding to a query is increased at the side of the originator, the trust

value of a peer, having issued a query, is decreased, by the priority value of

the said query, on the side of the peer indirecting the query or responding to

the query, depending on the load of the responsive peer.

The following simplified abstract example might illustrate this further. Say

the trust value tA(P1) that peer A applies to P1 is defined as trustA(P1). If

A now receives a query with priority prio1 it calculates the effective priority

prioEff = min(tA(P1), prio1) and decreases tA(P1) by this value. A can de-

cide to charge P1 when indirecting the query or when sending the respond. It

should be noted that this means that the maximum effective priority priomax

that queries P1 sends to A can have is limited by tA(P1). If A itself has sent a

query with prio2 to the peer P2 and receives a reply from it, A increases the

30



trust value trustA(P2) by the value of prio2. In any case A will not disclose

how much it charged for a request to discourage manipulation attempts by

malicious peers.

A

CB

ED

A

A

B

B

C

C

D

D

E

E

∞ 100 3 0 42

0 ∞ 0 - -

5 200 ∞ - 2

1 - 7 ∞ -

140 - 3 - ∞

Figure 2.8: Trust in a small GNUnet

It must be pointed out that if a peer is considered idle, which means that

its CPU and network load is below a certain percentage pbusy, it forwards,

or more precisely indirects (see 2.3), queries without considering or reducing

the trust value of the sending peer. Still the originator of the request will

credit the responder when receiving answer to his request.

If the load of the peer increases beyond pbusy however and the peer can

only respond to a part of the incoming queries, those with lower effective

priority will be dropped and queries with a higher effective priority will be

forwarded (or indirected) and charged for as explained above. The reason for

the preferred processing of high priority requests is simply that a higher credit

rating on the side of the requester is to be gained by the peer when it delivers

the response. Since queries with higher priorities are likely to be processed

preferably by adjacent nodes, peers will send queries with a sufficiently high

priority right from the start to ensure messages are not dropped by their

31



neighbors.

2.5 Deniability

Even if the anonymity of a peer is broken by an attacker the security ar-

chitecture of GNUnet provides the feature of credible denial of knowledge

about forwarded contents. Deniability is guaranteed because as opposed to

intermediaries, the originator of a query, who is also the final recipient of

the response, is the only one owning the relevant information to decode the

content. Therefore intermediaries cannot be held legally liable for transmit-

ted contents in most jurisdictions. The responding peer can deny knowledge

about the content with reasonable credibility, because it could claim to having

received the content by migration in the first place. This makes it virtually

impossible for the attacker to distinguish responders from intermediaries. A

special encoding scheme, as described in [17], has been developed for GNUnet

to provide deniability and will be laid out below.

2.5.1 ECRS

Encoding for censorship resistant sharing (ECRS) consists of three compo-

nents. The first component is the DBlock which corresponds to 32kBit of

encrypted data. The second data structure is the IBlock which is similar to

UNIX INodes. IBlocks are organized in a tree structure and contain the infor-

mation necessary to reassemble the data from the distinct DBlocks. The final

and topmost component is the KBlock, which contains encrypted meta-data

and the encrypted keyword of the query.
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DBlock and content hash key

As mentioned above the DBlock corresponds to 32kBit of the original file.

The data of the last block is padded with zeros if it is smaller than 32kBit. For

encryption a symmetric AES cipher is used. The cipher key of the DBlock

containing the encrypted block EKi
(Bi) derived from the plain-text block

Bi is Ki := H(Bi), with H being a SHA512 hash function. Also unique

identification of an encrypted block EKi
(Bi) is possible by calculating its’

query hash Qi := H(EK i(Bi)). Therefore Qi can be used to search an

encrypted block EKi
(Bi) without revealing Ki. Moreover the key-query pair

(Ki, Qi) can be used to find the encrypted block EKi
(Bi) and decrypt it

resulting in Bi. The pair (Ki, Qi) is called content hash key (CHK) [10] and

for this reason, the encoding scheme is termed CHK-encoding.

IBlock

Data greater than the block-size of 32kBit has to be encoded by multiple

DBlocks. Therefore the same number of CHKs is required to retrieve and

decrypt the DBlocks, it is also inevitable to know the order of the CHKs to

facilitate reassembly of the original file. For this purpose ECRS incorporates

the IBlock, which contains up to 256 CHKs of corresponding DBlocks. This

means with one IBlock a file of size up to 8 Mbit = 32 Kbit (blocksize) *

256 (max number of CHKs per INode) can be handled. For files greater than

this size multiple IBlocks are required, one for each 8Mbit block of encrypted

data. These IBlocks are then CHK encoded similarly to the DBlocks and the

resulting CHKs are maintained by another layer of IBlocks. A file with a size

of 32 MBit for example would require 1024 CHKs to be grouped into four

IBlocks. These four IBlocks I1 . . . I4 would then be CHK-encoded and the
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resulting four CHKs would be arranged into another IBlock IT . Subsequently

bigger file sizes result in a larger number of required layers of IBlocks which

leads to a structure resembling a Merkle-tree [25].

IBlockT

IBlock1 IBlockk

DBlock1 DBlockl DBlockm DBlockn

...

... ......

... ...

CHK(D1)
...

CHK(Dl)

CHK(I1)
...

CHK(Ik)

CHK(Dm)
...

CHK(Dn)

Figure 2.9: IBlocks

KBlock

For usage in a file sharing application it is necessary to be able to search for

content with a plain-text keyword. On the other hand keywords should not

be exposed to the intermediaries to prevent censorship of specific queries.

To provide the functionality of anonymously advertising and searching con-

tents under a keyword a special kind of block is introduced by ECRS, the

KBlock.

Listing 2.5: KBlock

struct KBlock

{

struct GNUNET_CRYPTO_RsaSignature signature;

struct GNUNET_CRYPTO_RsaSignaturePurpose purpose;

struct GNUNET_CRYPTO_RsaPublicKeyBinaryEncoded keyspace

;
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/* 0-terminated URI here */

/* variable-size Meta-Data follows here */

};

A new cryptographic primitive, the k-deterministic key, is used for the cre-

ation of KBlocks. A k-deterministic key is a key pair (PubH(k), P rvH(k))

derived from a keyword k. Both the public and the private key are generated

by using the hash H(k) of the keyword as seed for a pseudo-random number

generator. A Kblock is then constructed by encrypting the meta-data (MD)

required to download the file with a symmetric cipher using H(k) as cipher

key. The encrypted meta-data EH(k)(MD) is then signed with the private

key PrvH(k). The signed and encrypted meta-data [EH(k)(MD)]PrvH(k)
is

then joined with the public key PubH(k) to form the KBlock.

KBlock

IBlockT

IBlock1 IBlockk

DBlock1 DBlockl DBlockm DBlockn

32Kb Original data

...

... ......... ...

Figure 2.10: Tree of CHK-encoded blocks
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SBlock

Any peer in the network can publish content under a certain keyword. There-

fore it is to be expected, that searches for certain keywords deliver unsatisfy-

ing results, e.g. because content has been published under an inappropriate

keyword or it has been published under many different keywords. To alleviate

this problem ECRS provides the option to publish and search for contents

within a namespace. A namespace consists of a public-private key pair The

hash of the public key is used to publicly refer to the namespace. The private

key is used to sign content published within the namespace, which allows to

verify that the content has been published by the owner.

To incorporate the concept of namespaces into ECRS another kind of block,

the SBlock, is required. An SBlock is comprised of the encrypted key and

query hash (CHK) of the top IBlock together with the encrypted metadata

belonging to the content. The hash of the keyword under which the con-

tent was published serves as encryption key. Subsequently follows the query

identifier of the SBlock, which is the hash of the encryption key.

Listing 2.6: SBlock

struct SBlock

{

struct GNUNET_CRYPTO_RsaSignature signature;

struct GNUNET_CRYPTO_RsaSignaturePurpose purpose;

struct GNUNET_HashCode identifier;

struct GNUNET_CRYPTO_RsaPublicKeyBinaryEncoded subspace

;

/* 0-terminated update-identifier here */
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/* 0-terminated URI here (except for NBlocks) */

/* variable-size Meta-Data follows here */

};

Since IBlocks and DBlocks are not affected when content is published un-

der a namespace it is possible to publish the same content under several

namespaces without the need of additional memory, except for the necessary

SBlocks.

To search a namespace only the query identifier along with the hash of the

public key of the namespace are required. The query id is used by inter-

mediaries to identify the desired SBlock and the hash of the public key is

used to verify the signed contents. Decryption of the contents however is not

possible without knowing the original keyword under which the content was

published. Therefore only the originator of the query and the original pub-

lisher have knowledge about the actual, unencrypted content, thus providing

deniability for the intermediaries.
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3 Vulnerabilities

In this chapter the security vulnerabilities of GNUnet are examined. There-

fore various known attacks are tested for applicability against GNUnet. Only

applicable attacks are described in greater detail to emphasize the boundaries

of the inspected features.

3.1 Transport

Theoretically it is possible for an adversary to intercept HELLOs to learn

about the used transport system(s) and the related addresses of a node.

3.1.1 Denial of Service

If an attacker knows the transport addresses used by a peer and also controls

a (high) number of nodes on the network he can make his nodes drop the

traffic of the peer. This wouldn’t necessarily lead to a complete denial of

service for the peer, if not all his neighbors are controlled by the adversary,

but would impair network efficiency and redirect load onto non-malicious

neighbors.
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Assuming that a peer A has three neighbors, a regular peer B and two ma-

licious peers Cm and Dm, as illustrated in Fig. 3.1. The malicious peers

drop all packets from and to A. This means A can only send queries into

the network and retrieve data from the network via B and thus bandwidth

is reduced and delay is increased.

B

G

E

F

H

A

CmDm

I

Figure 3.1: Denial of Service

3.1.2 Man-In-The-Middle attack

An adversary A could also try to execute a Man-In-The-Middle attack by

intercepting the packages exchanged between two peers. To be able to con-

duct such an attack the adversary would first have to determine if two peers

are direct neighbors or put differently if both peers are directly connected

with each other. If that is not the case A would have to break anonymity
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before being able to determine if the peers in question exchange any data

at all. If the peers are directly connected A would have to correlate both

peer ids with the transport protocols and corresponding addresses used for

exchanging GNUnet packages between the two peers. Additionally A would

need to have the means to intercept all those packages by controlling at least

one router along the path.

Provided the adversary A can successfully intercept packets exchanged be-

tween two peers, he faces another problem. The content of the exchanged

packets (messages) are AES encrypted on application level using keys only

known to the two participating peers. Each incoming message is decrypted an

re-encrypted with the AES session key also known to the recipient. Therefore

the attacker would have to break AES encryption to be capable of reading

the content. This would require access to a huge amount of processing power

on the side of the attacker and is therefore highly unlikely.

If A actually succeeds in breaking the AES encryption and is able to inspect

packages he will either see queries with an inexpressive resource id or replies

with ECRS encoded content.

3.2 Authentication and Confidentiality

To directly conquer confidentiality in GNUnet, the attacker would either

have to break the 256bit AES encryption of regular GNUnet messages or the

2048bit RSA encryption that is used for exchanging the AES keys. As far as

the author is aware, no attacks, that work with acceptable time constraints,

against these ciphers have been published until today.

Since encryption cannot be broken, the attacker is left with only one option.
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To decrypt the messages exchanged between to peers, the attacker has to

acquire the used encryption keys.

3.2.1 Rewrite Attack

To conclude a rewrite attack an adversary changes parts of the data contained

in an encrypted message. If the used encryption protocol is mainly based on

bit-wise additions or similar operations the attacker could be able to predict

the changes in the decrypted plain text message and has therefore the means

to forge message contents.

This attack cannot succeed against GNUnet, because of two reasons. GNUnet

uses CFB mode for AES encryption, which is enough to prevent the attack

according to [32]. Secondly the content of GNUnet messages is always sup-

plemented with the hash value of itself. This allows peers to immediately

determine if a message has been tampered with or not. Additionally contents

are signed by the sender of the message providing further protection against

forging of messages.

3.2.2 Reflection attack

The reflection attack as laid out in [33] uses interception and repeated sending

of authentication messages to obtain a fully authenticated connection to a

target. The attack is commonly executed in following manner. First the

attacker initiates a connection to the target. The target then responds to the

attacker by sending an authentication message containing a challenge. Next

the attacker opens another connection to the target and sends the previously

received challenge as its own. The target now responds to the challenge on
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the new connection, hereby providing the attacker with the means to answer

back on the original connection. If the attack is successful the target accepts

the challenge received over the original connection and authenticates the

attacker.

GNUnet prevents this attack by using different keys for sending and receiving

of messages. Therefore if node A receives a challenge from another node B

the message cannot be used as challenge from A to B. Also each GNUnet

messages contains a peer id that identifies the sending (or indirecting) node.

Therefore a reflected message would contain the id of the original sender,

which is not supposed to happen at all and therefore clearly indicates an

attempt of forgery.

3.3 Anonymity

Since anonymity is the main purpose of GNUnet, it is of course one of the

first features to be subject to an attack. To successfully break the anonymity

of GNUnet an attacker R has to determine if a query has been initiated by

or a reply originated the attacked peer S. Therefore the attacker has to

learn about the topology of the network and has to determine which path a

message has taken.

As described in 2.3.1 on page 23 a GNUnet peer indirects queries it receives

by stripping the sender’s peer id from messages it receives and replacing it

with its own, as long as the peer’s CPU and bandwidth load is below a certain

margin. The indirection mechanism prevents R from being able to learn the

peer identity of the initiator of the query directly from the query itself. If the

peer’s load exceeds the above-mentioned margin or a low level of anonymity
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is desired a peer will leave the peer id of incoming queries unchanged or in

case of extreme loads it will even drop incoming queries. Thus the degree of

anonymity degS, described in 2.3.1 on page 27, decreases.

Each of the attacks proposed against anonymity in GNUnet, which are men-

tioned in this thesis, requires the attacker to analyze the anonymity sets (see

3.3.1 beneath) of one or several peers over a certain period of time. The

results of the analysis are then used to deduce which of the inspected queries

where initiated by the peer under scrutiny S. If such a deduction can be made

at all and with enough certainty depends on the degS, the resources available

to R, including the number of peers, routers, available network bandwidth

and processing power, and the number of observed anonymity sets.

3.3.1 Anonymity sets

The anonymity set of one round of anonymous communication by a mix

node S consists of a set of senders of messages received by the node, the

sender anonymity set, and the set of recipients which the node will send

those messages to in the next step. Provided S receives a set of messages

in a time interval t from a subset A
′

of all possible senders A. A
′

is then

referred to as the sender anonymity set (illustrated in Fig. 3.2). The size of

A
′

is |A′ | = a and one has 1 ≤ a� |A|.
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Figure 3.2: Sender anonymity set

In contrast B
′

is the subset of the possible recipients B that S will send the

previously received messages to in the next time interval t+ 1. B
′

is referred

to as the recipient anonymity set (illustrated in Fig. 3.3). The size of |B′

is |B′ | = b where 1 ≤ b � |B| and b ≤ a and corresponds to the batch size

of the mix S. It is to be noted that A
′

can contain elements of B
′

and vice

versa, A
′

and B
′

can also be identical.
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Figure 3.3: Recipient anonymity set

The union of these two sets constitutes the anonymity set of size m that

characterizes the anonymous communication taking place between senders

in the interval t and recipients in the interval t+ 1. The anonymity set is the

basic model for analysis for all attacks described in this section.

3.3.2 Probabilistic attacks

During a probabilistic attack the adversary tries to determine the commu-

nication partners of a peer by observing the anonymity sets resulting from

network activity.

Disclosure Attack

The disclosure attack as laid out in [1] is the first probabilistic attack that will

be discussed here. Its goal is to distinguish the b recipients B
′

of messages a
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node S sends, from all possible recipients B in the network. The disclosure

attack is subdivided into two phases, the learning phase and the exclusion

phase.

Learning phase To be able to successfully complete the learning phase

an attacker has to determine the size of the recipient anonymity set b of a

node S. If the attacker can make enough observations, b can be determined

recursively. If the learning phase could not be finished successfully, the at-

tacker has to adjust his estimate for b and repeat the learning phase. Because

of this fact, the assumption that the attacker can correctly determine b is

considered valid.

During the learning phase an attacker tries to find b mutually disjoint recipi-

ent sets B̂ from the messages S sends. For convenience the time t is increased

each time S sends a message and the recipient set at time t is denoted as

B̂t = b̂t1 , . . . , b̂tk . With this notation mutually disjoint recipient sets at time

t can be defined as (B̂j1 , . . . , B̂jm), B̂jx ∩ B̂jy = ∅ if x 6= y. If the attacker

has found the b recipient sets at the end of the learning phase he can be sure

that each set B̂jx contains only one of the peer communication partners of

S.

Excluding phase Now the attacker observes further outgoing message of

S and the resulting recipient anonymity sets. The goal of this observation is

to exclude the non-peer partners from the disjoint recipient sets B̂ found in

the learning phase. It is achieved by intersecting new recipient set B̃l with

the sets in B̂ so that only one element is contained in the intersection. Put

formally the refining of the basic sets (B̂j1 , . . . , B̂jm) requires the attacker to

the use new recipient sets B̃l that only intersect with one of the basic sets
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or B̃l ∩ B̂jx 6= ∅ and B̃l ∩ B̂jy = ∅ for all x 6= y. This is repeated until each

element of B̂ just contains one node, which means that all non-peer partners

of S have been excluded from the basic sets. Therefore the remaining b users

in B̂j1 , . . . , B̂jm have to be the communication partners of S.

Discussion As already stated in [1] the disclosure attack is NP-complete

and is equivalent to the well-known Clique problem [15]. Hence the attack

does not scale with rising numbers of recipient sets and is therefore not ap-

plicable with reasonable cost against highly connected and busy nodes.

Statistical Disclosure Attack (SDA)/ Intersection attack

The statistical disclosure attack improves the disclosure attack described

above, by introducing methods to reduce runtime and memory complexity.

The attack uses the same model as the default disclosure attack in that a mix

system is analyzed by observing the recipient anonymity sets. The process

of analyzing the recipient sets however is the major difference to the original

attack. Instead of executing costly intersection operations, probability values

are applied to identify potential recipients of the node under scrutiny.

To analyze the recipient sets a vector ~v is defined with size |B|, containing one

element for each of the potential recipients. Each element of ~v represents the

probability if the corresponding node is to be the recipient of a message send

by S. Assuming that an attacker R can only predict if a node can be recipient

or not and has no further knowledge about the probability distribution, each

element of ~v can be initialized with one of two values. If a node is not a

recipient at all the corresponding element of ~v is set to zero. Otherwise it is

assumed that the probability for possible recipients is evenly distributed and
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thus the element of ~v corresponding to the node is initialized with 1
m

.

A second vector ~u, that represents the probability distribution for all other

senders to select their recipients for each time interval, is defined. Again it is

assumed that probability is distributed uniformly over all potential recipients

B and accordingly all elements of ~u are set to 1
|B| .

To conclude the attack, R has to observe the messages that S sends in t

intervals (as mentioned in 3.3.2 t is increased every time S sends a message,

so the number of messages sent is equal to the index of the time interval).

From these observations the attacker can compile a list of vectors ~o1, . . . , ~ot

each of which represent the probability distribution of the recipient set of the

message sent by S at the time corresponding time index. For a sufficiently

large number t of observations one has:

Ō =

∑
i=1...t ~oi
t

=
~v + (b− 1)~u

b
(3.1)

By using the observations ~o1, . . . , ~ot, the batch size b of S and the probability

distribution ~u for other senders, R can therefore calculate ~v as follows:

~v = b

∑
i=1...t ~oi
t

− (b− 1)~u (3.2)

Finally R multiplies each element of ~v with each element of observation ~oi at

time index i. The resulting vector is then normalized to yield ~rk:

~rk =
~v · ~ok
|~v · ~ok|

(3.3)

The elements of now ~rk represent the probabilities of each corresponding

node to be the recipient of the message sent by S at time index i. Hereby a
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larger number of observations allows R to estimate probabilities with greater

significance.

Discussion The statistical disclosure attack improves the disclosure attack

by reducing the the computational complexity of the original disclosure at-

tack. However the quality of the prediction is depending upon the number

of observations and can therefore get quite expensive in large networks with

highly connected peers. For example, to gain knowledge about the topology

of a GNUnet network the attack would have to be executed against multiple

peers along a path simultaneously to effectively track a specific message or

message set.

Nevertheless, the concept of the statistical disclosure attack is very flexible

and can be modified to suit many different implementations of mix-based

anonymous networks, which the attacks extending or modifying the statisti-

cal disclosure attack described in [11], [24] or [23] eloquently illustrate.

Shortcut attack

The last probabilistic attack that will be described here is proposed in [22].

The attack is called shortcut attack and builds on the aforementioned in-

tersection attack 3.3.2. Contrary to all previous probabilistic attacks the

shortcut attack was especially tailored towards GNUnet. Therefore the ad-

versary is supposed to operate a GNUnet peer himself. Hence the attacker

does not monitor traffic of other peers at transport level, but analyses the

ingoing packages of the peer he operates. [22] describes a basic and an im-

proved variant of the attack. Since the basic attack is not applicable, as

stated by the author, only the improved variant will be discussed here.
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To he attack works under the assumption that linkable queries are received

with a higher probability from the node (or with the peer id of the node)

that is closer to the initiator, formally PA > PB if peer A is closer to the

initiator of the initiator than B. This assumption is based on the fact, that

busy GNUnet peers stop replacing peer ids of incoming queries with their

own. This implies, that more queries with the id of peer A arrive at the node

of the attacker in a certain interval, than queries with the id of peer B.

Relying on this precondition the attacker subsequently tries to find the origi-

nator of a set of linkable queries. Therefore the attacker has to connect to all

neighbors of the tested node and wait for linkable queries. Linkable queries

relate to the same content or more precisely to the same set of IBlocks and

DBlocks of a file. Then the attacker uses a statistical test to determine the

neighbor that is closer to the initiator.

To test the neighbors N1, . . . , Nn of the current node C it has to be decided

for each pair (C,Ni) whether both nodes are equally likable to receive linkable

queries from the originator or not. Since this examination is expensive to

compute, because a lot of observations have to be analyzed, the attacker

might first fall back to a simplified approach and relax the initial precondition

from PA > PB to PA � PB. That means the attacker estimates, that the

probability to receive a query from the peer A closer to the initiator is much

higher than the probability to receive a linkable query from B. Consequently

the attacker now assumes, that the first query he receives is from the node

that is closer to the originator. To verify this conclusion the attacker must

again make enough observations, so that the hypothesis PA 6= PB can be

accepted with a sufficient significance. If a closer node exists, it is selected

as the new current node and its neighbors have to be tested again, otherwise

the current node must be the initiator.
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The shortcut attack has the advantage over the other discussed probabilistic

attacks, that it focuses on actual features of GNUnet and is not based on

the usage of mixes. The lower degree of abstraction therefore could make the

implementation of the attack easier for an adversary. On the other hand the

approach suffers from some shortcomings, because [22] was published before

the specification of GAP [7] was available and therefore not all information

was available to the author. For example the size of GNUnet messages or

packets is estimated as 1kb, whereas it actually is 32kb. This fact alone

would multiply the size of data to analyze by factor 32, since the number of

necessary observations does not change. Especially the friend-to-friend mode

of GNUnet, which has not been considered by the author of [22], could make

this attack completely infeasible.

Suppose an attacker has recursively processed several nodes to get closer to

the initiator. Now he tries to connect to all neighbors of the current node.

The neighbor that actually is closer to the originator of the query is operating

in friend-to-friend mode and the peer id of the attacker is not contained in

this peers friend-list file. Now the attacker basically has hit a wall with

his efforts, because he cannot connect to the node in question and therefore

cannot proceed with the recursive convergence to the originator.

3.3.3 Other attacks on anonymity

Besides probabilistic attacks there are other approaches to break an anonymity

system. Basically there are two ways for an attacker to conclude a non-

probabilistic attack. One option is to manipulate the recipient sets of one or

more peers, as described in 3.3.3. The second alternative would be to gain

additional information about an anonymous communication by observing
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additional properties of the system, as in 3.3.3 for example.

(n-1) attack / flooding attack

The basic idea of the flooding attack is to send a big amount of messages to a

peer, to force it to almost exclusively forward these messages. Suppose that

a peer P receives n messages at a certain point in time and n − 1 of these

messages where sent by the attacker A. When P forwards the n messages A

might now be able to identify its own messages and therefore also the single

message M from another peer. In other words the attacker effectively reduces

the size of the recipient anonymity set to one, thereby making it impossible

for P to hide M .

The flooding attack cannot be applied against GNUnet for various reasons.

The first reason is that the economic model hampers attempts of flooding

nodes with queries by charging (reducing the local trust value) the sending

node for forwarding its queries. Secondly the peer-to-peer nature of GNUnet

makes it very unlikely, that an attacker can ensure that all messages bar one

arriving at a peer P originate from him, since other peers most probably will

also send messages to P . Finally messages sent between GNUnet peers are

padded to uniform size and are AES encrypted and therefore the attacker is

hard put to distinguish his messages from others.

Timing Attack

To identify messages indirected by a peer, an attacker could try to measure

the time spans, required to execute encryption operations. Therefore an

attacker A would have to observe the network traffic and must be able to
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identify GNUnet messages. A connects to a peer P and sends a number of

n messages to this peer. The messages A sends to P should have different

sizes, so that A can expect that encryption operations will need different

amounts of time. The attacker then measures the time between dispatching

of the message and forwarding of the message by P to its other neighbors.

If A can conduct enough time measurements he might be able to deduce

which of his messages has been forwarded to specific neighbors. Thus the

attacker A could enable himself to reconstruct paths messages take through

the network, if A can execute this attack successfully against a sequence of

peers. A more detailed view on timing attacks, including a more formalized

specification, can be found in [20].

Several of the security techniques, GNUnet makes use of, provide protection

against timing attacks:

1. mix concepts (batching, reordering)

2. delayed sending of messages

3. resending of messages

Each of these features adulterates the timing measurements concluded by A.

Therefore timing attacks against GNUnet do not promise to yield exploitable

results for an attacker.

3.4 Economy

Suppose an attacker A wants to flood a peer P with messages, to reduce the

anonymity set of P . He is hindered in this approach by the economic model

GNUnet makes use of. Remember that a P reduces the local trust-value
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of its counterpart Q when forwarding messages sent by Q. A could try to

circumvent this mechanism by executing a special attack, described beneath,

thereby enabling himself to execute the flooding attack afterwards.

3.4.1 Sybil attack

The sybil attack as described in [12] is used to enable A to pose under multiple

identities. This means the attacker appears as a set of unrelated participants.

Subsequently A uses the increased number of participants under his control

to mount other attacks.

In GNUnet it is not even necessary to execute the sybil attack because any

user can run as many peers, and therefore can have as many ids, as he likes.

As a consequence an attacker running a large number of peers could try to

connect a specific peer P and send it a large number of queries to execute

a flooding attack. GNUnet renders this approach futile by using the GAP

protocol in combination with its economic model. A GNUnet peer, when

busy, will not forward queries from neighbors whose local trust-value is not

sufficiently high. Since newly connected peers begin with a local trust-value

of zero an attacker can only expect that his messages will be forwarded as

long as the peer is idle. When the attacker sends enough queries to stress

the peer above its busyness threshold, P will stop forwarding messages from

untrusted neighbors and therefore also messages originating from the peers

of A. This effectively renders the increased numbers of A’s peers useless for

mounting any kind of flooding attack.
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3.5 Deniability

An adversary that wants to execute censorship over intermediaries in GNUnet

has to decide, if he wants to exercise editorial control over actual contents or

if he wants to prevent searches for keywords associated with ’unwanted’ con-

tent. Anyway the attacker subsequently has to work around the deniability

provided by ECRS. The authors of [17] themselves have suggested possible

attacks against ECRS, which are described hereafter.

3.5.1 Censoring queries

To execute censorship over queries an attacker, that has the means to force

intermediaries to censor queries for specific contents, could try to compile a

list of keywords under which these contents might have been published. From

this list the attacker could generate the KBlocks related to the keywords and

force intermediaries to drop queries requesting these blocks.

Although this approach allows an adversary to filter queries for certain popu-

lar or easy to guess keywords, it does not provide the means to censor specific

content. Also this form of censorship is easy to circumvent by publishing con-

tent under multiple keywords. If content is published under a namespace the

guessing of keywords alone would not even allow the attacker to construct

the SBlock. To do so the attacker would have to additionally figure out the

hash of the public key of the namespace. Therefore the censorship of queries

for content in the global namespace will not affect the queries for content

published within a namespace.
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3.5.2 Censoring content

To force intermediaries to exercise editorial control (in the sense of identify-

ing and blocking specific contents) an adversary has to be able to identify

the encoded content that should be blocked (these content is referred to as

suspicious content further on). To gain this ability it is necessary to iden-

tify and correlate the blocks resembling the file(s) in question, namely the

DBlocks and IBlocks. To do so, an attacker has to search the network for

keywords he associates with unwanted content. From each set of search re-

sults the attacker has to select those elements that point to content he deems

to be suspicious. Finally the adversary has to download the selected content

thereby obtaining the DBlocks and IBlocks.

Contrary to the sole guessing of keywords the strategy described above allows

censoring specific contents and therefore constitutes a more subtle from of

censorship. It is however much more expensive to apply, because contents

have to be downloaded first and therefore memory demands grow linearly

with the number of contents that should be censored. Again this attack is

not hard to circumvent, since only minor changes to the content are necessary

to obtain different IBlocks and DBlocks.

3.5.3 Flooding global keyword space

A destructive attacker could try to publish useless content under many dif-

ferent keywords and thereby polluting the global keyword space. If enough

content is published the adversary could succeed in making searches for pop-

ular keywords return mostly valueless results.

The use of namespaces is a possible defense against this kind of attack, be-
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cause only the owner of a namespace can use it to publish content. However

peers then would have to decide if namespaces are owned by users that pro-

vide valuable content.
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4 Conclusion

First of all it has to be noted, that the current version of GNUnet cannot be

considered stable, since there are still major changes in progress, planned or

in discussion. For example in one of the future versions GNUnet developers

might switch from RSA encryption for exchanging session keys to ECC (El-

liptic Curve Cryptography) [19]. This might cause further significant changes

to the code and possibly the protocols of GNUnet. It also has to be noted,

that previous versions are not protocol compatible with the current release

or amongst themselves. Hence it can be expected, that still a lot of time and

effort has to be spent by the authors of GNUnet, until a final release can be

published.

Nevertheless, GNUnet is one of the most ambitious projects regarding the

anonymization of a large-scale peer-to-peer application. Many commonly

used security and anonymization techniques have been combined with fea-

tures of previously existing anonymous networking applications to achieve

anonymity in a large distributed peer-to-peer network.

The encoding for censorship resistant sharing (ECRS) as described in 2.5 ex-

tends the CHK-encoding introduced by Freenet [10] by using it on block-level

rather than on file-level. This allows swarming, without impairing deniability

at all.
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GNUnet’s anonymity protocol (GAP), as presented in 2.3, supplements clas-

sic mix techniques with automatic noise generation by content migration,

thus achieving a higher level of anonymity.

RSA-encrypted exchange of session keys combined with a duplex handshake

involving challenges and AES-link-encryption of messages provide for secure

authentication and a high standard of confidentiality.

The economic model of GNUnet mainly uses the self-interest of peers to

ensure, that contribution to the network is credited and usage of the net-

work is charged for. Hereby protection against freeloaders or malicious peers

trying to take advantage of a peers resources is achieved almost as a by-

product.

All this combined yields the result that GNUnet proves to be resistant against

a great range of attacks and allows users to conduct anonymous and secure

file-sharing. It is to be hoped, that when a stable version finally becomes

available and is included in the repositories of the major Linux distribu-

tions, GNUnet will become more widely used. This again would increase the

amount of available content, further attracting additional users.
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A Installation

Version 0.9.3 is the latest release of GNUnet. It is using the latest version of

ECRS (ECRS v2). This section describes three ways, how GNUnet can be

installed and configured on Debian 6.0.4 (squeeze).

A.1 Installation using release versions

In order to get a stable installation, tarballs of specific releases are used

instead of the latest svn revision. The installation instructions for Debian

5.0 at [2] can be used, with slight modifications.

Installation of version 0.6.3 of libextractor:

Replace the command

svn checkout https://gnunet.org/svn/Extractor

with

wget -O ftpmirror.gnu.org/libextractor/libextractor-0.6.3.tar.

gz | tar zxv
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to download and extract the tarball for libextractor.

Installation of version 0.9.22 of libmicrohttpd:

Replace the command

svn co https://gnunet.org/svn/libmicrohttpd

with

wget -O -ftp://ftp.gnu.org/gnu/libmicrohttpd/libmicrohttpd

-0.9.22.tar.gz | tar zxv

to download and extract the tarball for libmicrohttpd.

Installation of version 0.9.3 of GNUnet :

Replace the command

svn checkout https://gnunet.org/svn/gnunet

with

wget -O - ftp://ftp.gnu.org/gnu/gnunet/gnunet-0.9.3.tar.gz |

tar zxv

to download and extract the tarball for GNUnet.

Installation of version 0.9.3 of GNUnet-gtk:

Replace the command

svn checkout https://gnunet.org/svn/gnunet-gtk
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with

wget -O - ftp://ftp.gnu.org/gnu/gnunet/gnunet-gtk-0.9.3.tar.gz

| tar zxv

to download and extract the tarball for GNUnet-gtk.

GNUnet-gtk dependencies not mentioned in the install scripts on https:

//gnunet.org are:

libgtk2.0-dev

libgladeui-1-9

libgladeui-1-dev

These packages are in the Debian repository and can be installed with apt-get

or the Synaptic packet manager.

A.2 Installation using latest svn revision

The installation instructions for Debian 5.0 at [2] can be used. The depen-

dencies for gnunet-gtk mentioned above are also required.
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B Configuration

It is necessary to tell the linker the location of the GNUnet libraries. There-

fore one can either use the following command to add the location to the

linker path temporariliy:

export LD_LIBRARY_PATH=/usr/local/lib

The second option would be to add the location of GNUnet binaries to

/etc/ld.so.conf permanently:

sudo sed -i ’$ a\/usr/local/lib’ /etc/ld.so.conf

sudo ldconfig

For configuration of GNUnet, use:

gnunet-setup

The following window will open and provides the options for configuration

of GNUnet:
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Figure B.1: General configuration

Figure B.2: Network configuration
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Figure B.3: Transport configuration

Figure B.4: File sharing configuration
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Finally you can start the file-sharing application by using:

gnunet-fs-gtk

The following window will open and, as can be seen, allows searching, down-

loading and publishing.

Figure B.5: File sharing application
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